* Test fuer Triodenmodell ******************* *SRC=12AU7A2;12AU7A2;Tubes;Complex;Triode, No Heater *SYM=TRIODE1 .SUBCKT 12AU7A2 1 2 3 * Anode Grid Cathode * COPYRIGHT EXCEM, 1993 Triode without Heater Model * X1 1 2 3 TRIODE1 * {ISAT=99m SFS=0.7 VBIG=-0.9 VBIA=-1.3 MU=17 RMU=0.5 VMU=-20 SFMU=1.6 * + K=827E-6 RK=0.08 VK=-20 SFK=1.6 SIGMAG=0.05 ALPHAG=5.2 SFG=3.5} * * * C2 1 2 1.5P C3 3 1 0.5P C4 2 3 1.6P * * *INCLUDE VACUUMNL.LIB .ENDS * * * * .SUBCKT TRIODE1 A G C PARAMS: K=827E-6 RK=0.08 VK=-20 SFK=1.6 MU=19.5 RMU=0.5 VMU=-20 SFMU=1.6 VBIG=-0.9 VBIA=-1.3 ISAT=99m SFS=0.7 ALPHAG=5.2 SIGMAG=0.05 SFG=3.5 * * THE TRIODE'S 14 PARAMETERS ARE: * * SFS shape factor of the saturation law. * VBIG contact potential of the grid * (the voltage above which grid may current start to flow). * VBIA contact potential of the anode. * MU amplification factor at slighly negative grid voltage. * RMU reduction factor for MU at very negative grid voltage. * VMU grid voltage for mid-range MU (negative). * SFMU shape factor for MU reduction law. * K perveance at slightly negative grid voltage. * RK perveance reduction factor at very negative grid voltage. * VK grid voltage for mid-range perveance (negative). * SFK shape factor for perveance reduction law. * SIGMAG effective cross-section of the grid relative to the anode. * ALPHAG grid current amplification factor. * SFG shape factor of the grid current law. * H ist ein Hilfsknoten zum Test der Gl. kann später wieder entfernt werden **********V = V(G,C) < -1P ? B31 30 0 V = V(G,C) / {VK} * B1 15 0 V = U(1P-V(G,C))*({K} * (1+{RK} * (V(30))^{SFK}) / (1 + (V(30))^{SFK})) + U(V(G,C)-1P) * {K} * V(15) is the effective perveance * **********V = V(G,C) < -1P ? * B32 31 0 V = (V(G,C))/{VMU} B2 16 0 V=U(1P-V(G,C))* ( {MU}*(1 + {RMU}*(V(31))^{SFMU}) /(1 + (V(31))^{SFMU})) + U(V(G,C)-1P) *{MU} * * * * * V(16) is the effective MU * B4 9 0 V = V(G,C) - {VBIG} + (V(A,C) - {VBIA}) / (V(16) + 1) * ***********V(9) > 0 ? B6 10 0 V = U(V(9))* V(15) * V(9)^1.5 / ({ISAT} + 1P) * **********V(10) < {SFS} ? B7 12 0 V = U({SFS} - V(10)) * V(10) * ({ISAT} + 1P) + U(V(10)-{SFS})*({ISAT} + 1P) * ({SFS} + (V(10) - {SFS}) * {1-SFS} / ({1 - 2 * SFS} + V(10))) * * B7 contains an arbitrary saturation law modeled by the shape factor SFS * to match the available data. SFS should be between 0 and 1. The * lower SFS the sloppier the saturation law. * * *********V(A,C) > {VBIA + 0.1M} ? B8 14 0 V = U(V(A,C)-{VBIA}-0.1m)*((V(A,C) - {VBIA}) / {ALPHAG}) + U(-V(A,C)+{VBIA}+0.1m)*2P * **********V(G,C) > {VBIG + 0.1M} ?V(14) > 1P ? B9 28 0 V = U(V(G,C)-{VBIG+0.1m})*U(V(14)-1p)*((V(G,C)-{VBIG} + {SIGMAG^(1/SFG)}*V(14))/(V(G,C)-{VBIG} + V(14)))^{SFG} * * * * B10 8 0 V = U(-V(G,C))* V(28) * (({VBIG+10U} + V(C) - V(G)) / {VBIG+10U}) + U(V(G,C))*V(28) * B15 G C I = V(8) * V(12) * B17 A C I = (1 - V(8)) * V(12) * * .ENDS