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Abstract

The occurrence of relaxation oscillations in LC-oscillators is studied from a theoretical
and experimental point of view with appropriate attention given to the transition be-
tween harmonic oscillations and relaxation oscillations. A generic model circuit for a
tuned input, inductive feedback LC-oscillator is introduced and a Liénard type differen-
tial equation governing it’s behavior is derived. After acquiring a basic understanding
of relaxation oscillations by studying Van der Pol’s differential equation, a diode clipper
is introduced into the LC-oscillator tank and it is shown that the resulting oscillator is
qualitatively similar to the Van der Pol oscillator. The resulting differential equation
is then solved numerically and it is shown that this oscillator can, as expected, exhibit
harmonic oscillations as well as relaxation oscillations. Finally, a practical circuit of an
LC-oscillator with LC tank diode clipping that can show harmonic oscillations as well
as relaxation oscillations is presented.

Introduction

Relaxation oscillations are a frequently encountered phenomenon in nature. In
electrical engineering, relaxation oscillators like the astable multivibrator have
numerous applications. Figure 1 shows a typical relaxation oscillation in an
electronic system producing an output voltage U(t).

The typical pattern of relaxation oscillations is a relatively slow decay of the
output starting from the positive extremum, followed by a sudden jump to the
negative extremum, followed again by a relatively slow decay and another sudden
jump to the positive extremum again at which the cycle then repeats. Obviously,
relaxation oscillations are fundamentally different from sinusoidal harmonic os-
cillations.

Our interest is therefore naturally directed towards systems that are capable of
exhibiting both, (approximate) harmonic oscillations and relaxation oscillations.
It may come as a surprise that an LC-oscillator is such a system since this type of
oscillator is usually associated with harmonic oscillations. We shall therefore in
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Figure 1: Relaxation oscillations

the remainder of this paper investigate the occurrence of relaxation oscillations
in LC-oscillators.

A Generic Tuned Input, Inductive Feedback LC-Oscillator

Let us start with a model of a generic LC-oscillator that has the LC tank at the
input side of the feedback device and uses inductive feedback through a feedback
coil Lf coupled inductively to the tank coil L with a coupling factor of 0 ≤ k ≤ 1
as depicted in figure 2.

In this case, it turns out to be convenient to model the losses in the LC tank
by a parallel loss resistor RP giving rise to a Q-factor [4] of Q = R

√
C/L. The

feedback device “FB” is assumed to be a current source that impresses a current
If into the feedback coil. Also, the feedback device is assumed to have a finite
input resistance, giving rise to an input current IIN. The dependency of IIN and
If on the tank voltage U shall be given by

IIN = g(U) and If = h(U)

where g and h are two sufficiently smooth and, in general, non-linear functions.
We shall now derive a differential equation for U(t) governing the circuit. The
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Figure 2: Tuned input, inductive feedback oscillator

reader not interested in the details of the derivation may at this point skip to
equation (5).

From Kirchhoff’s laws [1] and abiding by the arbitrarily defined positive current
directions in figure 2, we obtain

IL = IRP
+ IC + IIN (1) U = UC = URP

= −UL (2)

Also, for the current IC through the capacitor C and the voltage UL across the
inductor L we have1 [2], [3]

IC = CU̇C (3) UL = LİL −Mİf (4)

where the mutual inductance M between tank and feedback coil is given by M =
k
√
LLf . Differentiating equation (1) with respect to time and using equations

(3) and (4) then yields

1

L
UL +

M

L
İf −

1

RP

U̇RP
− CÜC − İIN = 0

Applying the chain rule of differential calculus to IIN = g(U) and If = h(U) gives

İIN = g′(U)U̇ and İf = h′(U)U̇

1In this paper we shall follow the usual conventions and define ẋ = dx/dt and f ′(x) =
df(x)/dx.
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which can be plugged into the above differential equation. Using equation (2) we
then arrive at the differential equation

LCÜ + L

(
1

RP

+ g′(U)− k
√
Lf

L
h′(U)

)
U̇ + U = 0 (5)

Introducing the stretched time scale

t′ = ω0t with ω0 =

√
1

LC

which entails dU/dt = ω0 · dU/dt′ and d2U/dt2 = ω2
0 · d2U/dt′2 we finally obtain2

Ü + p(U) · U̇ + U = 0 (6)

with the damping function p(U) given by

p(U) =

√
L

C

(
1

RP

+ g′(U)− k
√
Lf

L
h′(U)

)
(7)

The critical damping [5] threshold of equation (6) is readily determined to be
p(U) = 2.

It is no surprise that equation (6) is a Liénard type differential equation [6] since
this type of differential equation frequently arises with the study of oscillatory
systems. Liénard type differential equations have been extensively studied regard-
ing existence and uniqueness of stable limit cycles for arbitrary initial conditions
U(0) = ξ1, U̇(0) = ξ2.

Understanding Relaxation Oscillations

Relaxation Oscillations were first studied in the 1920’s by Van der Pol and many
others [7] using the differential equation

Ü + ε
(
U2 − 1

)
· U̇ + U = 0

which is nowadays known as the Van der Pol equation. Obviously, the Van der
Pol equation is also a Liénard type differential equation with a damping function
p(U) of

p(U) = ε
(
U2 − 1

)
(8)

2Note that from now on, the “dot notation” designates differentiation with respect to t′.
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For the case of ε� 1 the Van der Pol equation produces nearly harmonic oscilla-
tions with a period of approximately T = 2π. However, for the case of ε� 1 the
Van der Pol equation exhibits pronounced relaxation oscillations [8] and we shall
therefore take a look at the Van der Pol damping function p(U) for ε = 10 as
depicted in figure 3 from which we can immediately explain the typical relaxation
oscillation curve as shown in figure 1.

Figure 3: Van der Pol damping for ε = 10

Let’s assume U is at −Umax in the left (U < 0) high damping region of figure 3
and will now start to move back towards U = 0. Due to the high over-critical
damping in this region, this motion3 is slow at first. However, after some time, U
is leaving the high damping region of p(U) and moves increasingly fast towards
U = 0. As it enters the strong negative damping region around U = 0 it is
catapulted into the right (U > 0) high damping region of p(U) and stops at
Umax. It then slowly (due to the high over-critical damping) leaves the right high
damping region of p(U) and approaches U = 0 again. As it enters the strong
negative damping region around U = 0 it is catapulted into the left high damping
region towards −Umax and the whole cycle starts again.

In contrast, the nearly harmonic oscillations in case of ε � 1 arise due to the
fact that for small values of ε the negative damping around U = 0 is not strong
enough to catapult U(t) into the high damping regions and the occurring weak

3Bear in mind that the LC-oscillator is mathematically equivalent to a one-dimensional
mechanical oscillator with U being the space coordinate.
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damping will only have a minute deformation effect on the otherwise harmonic
oscillations. In this context, it is also noteworthy that the relaxation oscillations
exhibited by the Van der Pol equation have a period much longer than the period
of T = 2π in the nearly harmonic case for ε � 1. This can be attributed to the
relatively large amount of time spent in the high damping regions of p(U).

From this understanding of how relaxation oscillations work, we can assume
that any system governed by equation (6) that has a damping function p(U)
that is qualitatively similar to the Van der Pol damping function depicted
in figure 3 can exhibit harmonic oscillations with a period of approximately
T = 2π (on a stretched time scale of t′ = ω0t) as well as relaxation oscillations
with a much longer period. Those relaxation oscillations will occur if the
negative damping around U = 0 is strong enough to launch U well into the
high damping regions of p(U) in each cycle.

LC Relaxation Oscillations Caused By Diode Clipping

As the reader can easily verify, using a linear feedback device with transconduc-
tance gm = a that has an input characteristic of IIN ∝ U3 will yield a Van der
Pol type damping function given by equation (8)4. Hence, using such a feedback
device would enable the circuit from figure 2 to perform nearly harmonic oscilla-
tions as well as relaxation oscillations based on the choice of the transconductance
parameter a = gm.

Here, we shall however focus on a more realistic input characteristic IIN = g(U)
of the feedback device and assume that the input of the feedback device itself
has a very high impedance but also needs to be protected from voltages above a
critical threshold5 using a two-way diode clipper as depicted in figure 4.

Assuming that we use N identical diodes with an ideality factor of n in each
branch, the voltage drop Ud across each diode is Ud = U/N . Since the forward
current of one branch is added to the reverse current of the other, by virtue of
Shockley’s diode equation [9] we obtain

IIN = g(U) = Is

[
exp

(
U/N

nUth

)
− 1

]
− Is

[
exp

(
−U/N
nUth

)
− 1

]
4This result is readily obtained by using h(U) = aU along with IIN = g(U) = (1/3)bU3 in

equation (7). A Van der Pol type damping function as given by equation (8) with ε = b
√
L/C

is then obtained by choosing b = ak
√
Lf/L− 1/RP.

5A practical example of such a device is a MOSFET.
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Figure 4: Diode clipper as voltage limiter

where Is is the reverse bias saturation current of the diode and Uth is the thermal
voltage6. Note that the minus sign between the two terms arises due to the fact
that Shockley’s equation correctly gives the reverse current with a negative sign
for negative voltages. The expression above readily simplifies to

g(U) = Is

[
exp

(
U

nNUth

)
− exp

(
−U

nNUth

)]
from which we straight forwardly obtain

g′(U) =
Is

nNUth

[
exp

(
U

nNUth

)
+ exp

(
−U

nNUth

)]
(9)

Again, we assume that the feedback device is linear on the output side with a
transconductance of gm = a, hence h(U) = a · U from which we immediately
obtain

h′(U) = a (10)

We can now plug these expressions for g′(U) and h′(U) into equation (7) to obtain
the damping function p(U) for the LC-oscillator with a diode clipper across the
tank. To get an idea of it’s shape, p(U) has been plotted in figure 5 for two diodes
(N = 2) in each branch with a reverse bias saturation current of Is = 1pA and an
ideality factor of n = 1.5. The remaining parameters are as follows: Uth = 26mV,
RP = 150kΩ, L = 400µH, C = 100pF, Lf = 100µH, k = 0.7 and a = 15mS.

6Approximately 26mV at room temperature.
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Figure 5: Damping due to diode clipping

Since the resulting damping function is qualitatively similar to the Van der Pol
damping function shown in figure 3, we expect the circuit to show nearly har-
monic oscillations for low transconductances and relaxation oscillations for higher
transconductances of the feedback device.

Indeed, using LSODE [10] to numerically solve differential equation (6) governing
the circuit with the parameters given above, we find nearly harmonic oscillations
with a period of T = 2π ·1.0017 on the stretched time scale for a transconductance
of gm = a = 0.1mS and pronounced relaxation oscillations with a period of
T = 2π · 4.096 on the stretched time scale for gm = a = 10mS as can be seen
from figure 6.

In practical circuits, diode clipping can often occur implicitly without the
presence of a diode clipper across the LC tank. A typical example would be
a JFET stage where the gate voltage rises above the source voltage.

A Practical Circuit

After looking at relaxation oscillations from a theoretical point of view, let us
now design a practical circuit that can be modeled by our generic circuit from
figure 2 and includes a diode clipper as depicted in figure 4 to experimentally
explore the transition from nearly harmonic to relaxation oscillations.
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Figure 6: LC-oscillator harmonic and relaxation oscillations

Going over the assumptions on the feedback device from the previous section
again, we see that our main task is to design a feedback device that, at least
approximately, has the following properties:

• Acts as a linear voltage controlled current source with high output resistance

• Has a reasonably high and constant input resistance

• Provides a simple way of setting the desired transconductance

These requirements can be fulfilled by a BJT emitter follower stage that is not
used as a voltage buffer but as a voltage controlled current source. The resulting
circuit is shown in figure 7.

In this configuration, the emitter voltage UE of the BJT follows the base voltage
UB at a distance that is approximately the base-emitter on voltage7 Uon. Hence,
we have ∆UB = ∆UE = RE∆IE. Since for any reasonably high current gain8

β of the BJT the collector current IC, which is also the feedback current If , is
approximately equal to the emitter current IE, we get

7Typically 0.65V for the BC547C.
8The minimum DC current gain of the BC547C is given as β = 420 in the datasheet.

However, one has to take into account that β decreases at higher frequencies. The transit
frequency, for which β has dropped to β = 1, is given as ft = 100MHz in the datasheet of the
BC547C.
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Figure 7: Practical LC-oscillator with amplitude limiting

gm =
∆If
∆UB

=
∆IC
∆UB

≈ ∆IE
∆UB

=
∆UB/RE

∆UB

=
1

RE

which is a very convenient way to set the desired transconductance gm of the
feedback circuit. Also, since the input resistance RIN of a BJT emitter follower is
RIN = βRE, the input resistance will be reasonably high if we choose RE ≥ 500Ω.

Setting the transconductance of the feedback circuit to gm = 0.1mS by choosing
RE = 10kΩ we obtain nearly harmonic oscillations at a frequency of approxi-
mately 556kHz9 as shown in figure 8.

Increasing the transconductance of the feedback circuit will gradually push the
oscillator into the region of relaxation oscillations. Figure 9 shows pronounced
relaxation oscillations at a significantly lower frequency of approximately 302kHz
for a transconductance of gm = 1.8mS (RE = 560Ω).

These experimental results nicely corroborate the theoretical results from the
previous sections.

9Bear in mind that there’s a parasitic capacitance of almost 50pF connected in parallel to
the LC tank. This parasitic capacitance is composed mainly of the probe’s capacitance, the
capacitance of the diode clipper and the base-emitter capacitance of the BC547C.
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Figure 8: Nearly harmonic oscillations for RE = 10kΩ

Figure 9: Relaxation oscillations for RE = 560Ω
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